Determining the potential indigenous red-yeasts producing β-carotene and their phylogenetic relationship

I Nyoman Sumerta(1*), Yeni Yuliani(2), Atit Kanti(3)

(1) Microbiology Division, Research Center for Biology, Indonesian Institute of Sciences (LIPI), Jalan Raya Jakarta-Bogor Km 46, Cibinong 16911, Indonesia
(2) Microbiology Division, Research Center for Biology, Indonesian Institute of Sciences (LIPI), Jalan Raya Jakarta-Bogor Km 46, Cibinong 16911, Indonesia
(3) Microbiology Division, Research Center for Biology, Indonesian Institute of Sciences (LIPI), Jalan Raya Jakarta-Bogor Km 46, Cibinong 16911, Indonesia
(*) Corresponding Author


Red-yeasts are pigmented yeast species that could synthesize carotenoids for food supplements and pharmaceutical purposes. However, this group contains a lot of species which need to be explored thoroughly. The objective of this study was to view the β-carotene production of three indigenous red-yeasts by modifying glucose content in the growth medium and verifying their phylogenetic relationship. The glucose content modification in growth media influenced the β-carotene production of each species. Rhodosporidiobolus ruineniae (InaCCY1638/Y15Eg075) and Rhodosporidiobolus poonsokiae (InaCCY1606/Y15Kr068) produced higher β-carotene than Rhodotorula paludigena (InaCCY1527/Y15Eg004). These Rhodosporidiobolus species were able to produce higher β-carotene from 0.5 to 2% glucose content while Rhodotorula was low production in 2% glucose content. The higher producers by Rhodosporidiobolus species were clustered to Ruineniae clade and could be a potential clade for higher β-carotene production. Based on this result, using a high carotenoid producer of red-yeasts from indigenous strains is potential to be developed for β-carotene bioindustry in the future.


β-carotene, glucose content, phylogenetic tree, red-yeasts

Full Text:



Aksu, Z., and A. Tuğba Eren. 2005. Carotenoids Production by the Yeast Rhodotorula Mucilaginosa: Use of Agricultural Wastes as a Carbon Source. 40 (9): 2985–91. DOI:10.1016/j.procbio.2005.01.011.

Alcaíno J, Marcelo B, and Víctor C. 2016. Carotenoid Distribution in Nature. Sub-Cellular Biochemistry. 79: 3–33.DOI:10.1007/978-3-319-39126-7_1.

Bertram, J. S. 1999. Carotenoids and Gene Regulation. Nutrition Reviews. 57 (6): 182–91. DOI:10.1111/j.1753-4887.1999.tb06941.x.

Buzzini P, Innocenti M, Turchetti B, Libkind D, van Broock M, and Mulinacci Nadia. 2007. Carotenoid Profiles of Yeasts Belonging to the Genera Rhodotorula, Rhodosporidium, Sporobolomyces, and Sporidiobolus. Canadian Journal of Microbiology.53 (8): 1024–31. DOI: 10.1139/W07-068.

Demain A L., and Martens E . 2016. Production of Valuable Compounds by Molds and Yeasts. The Journal of Antibiotics.70 (4): 347. DOI:10.1038/ja.2016.121.

Giovannoni, James J. 2004. Genetic Regulation of Fruit Development and Ripening. The Plant Cell 16 Suppl (March): S170–80.

Joonyul K, Smith JJ., Tian Li, and Dellapenna Dean. 2009. The Evolution and Function of Carotenoid Hydroxylases in Arabidopsis. Plant & Cell Physiology. 50 (3): 463–79. DOI:10.1093/pcp/pcp005.

Katoh K, and Standley D M. 2013. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Molecular Biology and Evolution 30 (4): 772–80. DOI:10.1093/molbev/mst010.

Kumar S, Stecher G, Li M, Knyaz C, and Tamura K. 2018. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution. 35 (6): 1547–49.DOI:10.1093/molbev/msy096.

Langi P, K Sotirios, Varzakas T, and Proestos C. 2018. Carotenoids: From Plants to Food and Feed Industries. 1852: 57–71.DOI:10.1007/978-1-4939-8742-9_3.

Libkind D., Brizzio S., and van Broock M. 2004. Rhodotorula mucilaginosa, a Carotenoid Producing Yeast Strain from a Patagonian High-Altitude Lake. Folia Microbiologica.49 (1): 19–25. DOI:10.1007/BF02931640.

Maldonade IR., Rodriguez-Amaya DB., and Scamparini AR.P. 2012. Statistical Optimisation of Cell Growth and Carotenoid Production by Rhodotorula Mucilaginosa. Brazilian Journal of Microbiology: [publication of the Brazilian Society for Microbiology].43 (1): 109–15.DOI:10.1590/S1517-838220120001000012.

Mussagy CU, Winterburn J, Santos-Ebinuma VC, and Pereira JFB. 2019. Production and Extraction of Carotenoids Produced by Microorganisms. Applied Microbiology and Biotechnology 103 (3): 1095–1114. DOI: 10.1007/s00253-018-9557-5.

Nagata M, Noguchi Y, Ito H, Imanishi S, and Sugiyama K. 2007. A simple spectrophotometric method for the estimation of alpha-carotene, beta-carotene and lycopene concentrations in carrot [Daucus carota] acetone extracts. Journal of the Japanese Society for Food Science and Technology 54 (7): 351–55.

Nisar N, Li L, Lu S, Khin NC, and Pogson BJ. 2015. Carotenoid Metabolism in Plants. Molecular Plant 8 (1): 68–82. DOI:10.1016/j.molp.2014.12.007.

Perrier V, Dubreucq E, and Galzy P.1995. Fatty Acid and Carotenoid Composition of Rhodotorula Strains. Archives of Microbiology 164 (3): 173–79.

Saini RK, and Young-Soo K. 2017. Progress in Microbial Carotenoids Production. Indian Journal of Microbiology 57 (1): 129–30. DOI:10.1007/s12088-016-0637-x.

Sumerta IN, and Kanti A. 2018. Taxonomic Approach for Species Diversity of Yeasts and Yeasts-like Fungi through D1/D2 Region of Large Subunit Ribosomal DNA Sequences. Biosaintifika: Journal of Biology & Biology Education 10 (1): 72–78. DOI:10.15294/biosaintifika.v10i1.11588.

Yuan H, Zhang J, Nageswaran D, and Li L. 2015. Carotenoid Metabolism and Regulation in Horticultural Crops. Horticulture Research 2 (August): 15036. DOI:10.1038/hortres.2015.36.

Zhao Y, Guo L, Zhuang X, Chu W. 2019. Isolation, Identification of Carotenoid-Producing Rhodotorula sp. From Marine Environment and Optimization for Carotenoid Production. Marine drugs 17: 161.DOI:10.3390/md17030161.


Article Metrics

Abstract views : 336 | views : 194


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright © 2019 by Indonesian Culture Collection (InaCC), Research Center for Biology
Indonesian Institute of Sciences (LIPI)

Cibinong Science Center (CSC), Jln. Raya Jakarta-Bogor KM. 46 Cibinong 16911, West Java, Indonesia
Telp. +62-21-8761356, Fax. +62-21-8761357
Available online:
e-ISSN 2685-4430