Challenge of bacteriophage application to improve food safety and its administration into the human gut: an article review

Qori Emilia(1*)

(1) Microbiology Division, Research Center for Biology, Indonesian Institute of Sciences (LIPI)
(*) Corresponding Author

Abstract


Ensuring microbial food safety has always been a challenge at every stages along the food chain. Meanwhile, healthier community lifestyle demands natural antimicrobial agents to alleviate the increasing use of chemical preservatives to address microbial contamination. Antimicrobial resistance issue has also elevated the effort to search for an alternative way to antibiotics. Bacteriophage (phage) is currently being assessed for its potency as a biocontrol agent to enhance food safety and as a tool for therapeutic purposes. Prior to phage application, safety assessment must be conducted in which includes several considerations: from the discovery, toxicological aspects to the impact of phage ingestion on the gut microbiota. The gut microbiota which consist of variety of microorganisms inside the human gastrointestinal tract, cohabitate to each other. Phage is naturally present as one of microorganisms in the human gut and dynamically interacted with other microbial communities. Phage application to foods and food-contact surfaces may leave a residue and cause the phages to be ingested, which in result may alter the gut microbiota composition. Many findings have examined the relationship between gut microbiota and human health, and so is the factors affecting their modulation. This review aimed to discuss several points of view from published research papers related to the challenge of phage to improve food safety and its administration into the human gut.

Keywords


bacteriophage, biocontrol, food safety, gut microbiota, therapy

Full Text:

PDF

References


Abedon ST, Kuhl SJ, Blasdel BG, Kutter EM. 2011. Phage treatment of human infections. Bacteriophage 1(2), 66-85. DOI:10.4161/bact.1.2.15845

Ackermann HW. 2011. Bacteriophage taxonomy. Microbiol Aust (32), 90-94.

Adriaenssens EM, Sullivan MB, Knezevic P. 2020. Taxonomy of prokaryotic viruses: 2018‑2019 update from the ICTV bacterial and archaeal viruses subcommittee. Archi Virol 165, 1253–1260. DOI: 10.1007/s00705-020-04577-8

Barylski J, Kropinski AM, Alikhan NF, et al. 2020a. ICTV virus taxonomy profile: Herelleviridae. J Gene Virol 101(4), 362-363. DOI: 10.1099/jgv.0.001392

Barylski J, Enault F, Dutilh BE, et al. 2020b. Analysis of spounaviruses as a case study for the overdue reclassification of tailed phages. Syst Biol 69(1), 110-123. DOI: 10.1093/sysbio/syz036

Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315(5819), 1709-1712. DOI: 10.1126/science.1138140

Centers for Disease Control and Prevention (CDC). 2019. Antibiotic Resistance Threats in the United States. Atlanta, GA: U.S. Department of Health and Human Services. DOI:10.15620/cdc:82532

Centers for Disease Control and Prevention (CDC). 2011a. Foodborne Germs and Illnesses. Available online at https://www.cdc.gov/foodsafety/foodborne-germs.html (Accessed April 22, 2020)

Centers for Disease Control and Prevention (CDC). 2011b. Burden of Foodborne Illness: Findings. Available online at https://www.cdc.gov/foodborneburden/2011-foodborne-estimates.html (Accessed April 22, 2020)

Charpentier E, Courvalin P. 1999. Antibiotic resistance in Listeria spp. Antimicrob Agents Chemother 43(9), 2103-2108

Chibani-chennoufi S, Bruttin A, Dillmann M, Brüssow H. 2004. Phage-host interaction: an ecological perspective. J Bacteriol 186(12), 3677-3686. DOI:10.1128/JB.186.12.3677

Citorik RJ, Mimee M, and Lu TK. 2014. Bacteriophage-based synthetic biology for the study of infectious diseases. Curr Opin Microbiol 19,59-69. DOI: 10.1016/j.mib.2014.05.022

Dąbrowska K. 2019. Phage therapy: what factors shape phage pharmacokinetics and bioavailability? Systematic and critical review. Med Res Rev 39(5), 1-26. DOI:10.1002/med.21572

Dion MB, Oechslin F, and Moineau S. 2020. Phage diversity, genomics and phylogeny. Nat Rev Microbiol 18(3), 125-138. DOI: 10.1038/s41579-019-0311-5

Draper LA, Ryan FJ, Smith MK, Jalanka J, Mattila E, Arkkila PA, Ross RP, Satokari R, and Hill C. 2018. Long-term colonisation with donor bacteriophages following successful faecal microbial transplantation. Microbiome 6, 220.

El Haddad L, Roy JP, Khalil GE, et al. 2016. Efficacy of two Staphylococcus aureus phage cocktails in cheese production. Int J Food Microbiol 217, 7-13. DOI:10.1016/j.ijfoodmicro.2015.10.001

European Food Safety Authority (EFSA). 2016. Evaluation of the safety and efficacy of ListexTM P100 for reduction of pathogens on different ready‐to‐eat (RTE) food products. EFSA J 14(8). DOI:10.2903/j.efsa.2016.4565

Food and Drug Administration (FDA). 2019. Important safety alert regarding use of fecal microbiota for transplantation and risk of serious adverse reactions due to transmission of multi-drug resistant organisms. Available online at https://www.fda.gov/vaccines-blood-biologics/safety-availability-biologics/important- safety-alert-regarding-use-fecal-microbiota-transplantation-and-risk-serious-adverse. (Accessed April 20, 2020)

Forde A, Hill C. 2018. Phages of life – the path to pharma. Br J Pharmacol 175(3), 412-418. DOI:10.1111/bph.14106

Furfaro LL, Payne MS, Chang BJ. 2018. Bacteriophage therapy: clinical trials and regulatory hurdles. Front Cell Infect Microbiol 8, 376. DOI:10.3389/fcimb.2018.00376

Goode D, Allen VM, Barrow PA. 2003. Reduction of experimental Salmonella and Campylobacter contamination of chicken skin by application of lytic bacteriophages. Appl Environ Microbiol 69(8), 5032-5036. DOI:10.1128/AEM.69.8.5032- 5036.2003

Greer GG. 2016. Bacteriophage control of foodborne bacteria. J Food Prot 68(5), 1102-1111. DOI:10.4315/0362-028x-68.5.1102

Gupta S, Allen-Vercoe E, Petrof EO. 2016. Fecal microbiota transplantation: in perspective. Therap Adv Gastroenterol 9(2), 229-239. DOI:10.1177/1756283X15607414

Huff WE, Huff GR, Rath NC, Balog JM, Donoghue AM. 2002. Prevention of Escherichia coli infection in broiler chickens with a bacteriophage aerosol spray. Poult Sci 81(10), 1486-1491. DOI:10.1093/ps/81.10.1486

International Committee on Taxonomy of Viruses (ICTV). 2019. Virus Taxonomy: 2019 Release. EC 51, Berlin, Germany. Available online at https://talk.ictvonline.org/taxonomy/p/taxonomy_releases. (Accessed May 5, 2020)

Kim KP, Klumpp J, Loessner MJ. 2007. Enterobacter sakazakii bacteriophages can prevent bacterial growth in reconstituted infant formula. Int . Food Microbiol 115(2),195-203. DOI:10.1016/j.ijfoodmicro.2006.10.029

Leszczyński P, Weber-Dabrowska B, Kohutnicka M, Luczak M, Górecki A, Górski A. 2006. Successful eradication of methicillin-resistant Staphylococcus aureus (MRSA) intestinal carrier status in a healthcare worker--case report. Folia Microbiol (Praha). 51(3), 236-238. DOI:10.1007/bf02932128

Lewis K. 2008. Multidrug tolerance of biofilms and persister cells. Bacterial Biofilms 107–131. DOI:10.1007/978-3-540-75418-3_6

Loc-Carrillo C, Abedon ST. 2011. Pros and cons of phage therapy. Bacteriophage 1(2), 111-114. DOI:10.4161/bact.1.2.14590

Marza JA, Soothill JS, Boydell P, Collyns TA. 2006. Multiplication of therapeutically administered bacteriophages in Pseudomonas aeruginosa infected patients. Burns 32(5), 644-646. DOI:10.1016/j.burns.2006.02.012

Matsuzaki S, Rashel M, Uchiyama J, et al. 2005. Bacteriophage therapy: a revitalized therapy against bacterial infectious diseases. J Infect Chemother 11, 211–219. DOI: 10.1007/s10156-005-0408-9

McVay CS, Velásquez M, Fralick JA. 2007. Phage therapy of Pseudomonas aeruginosa infection in a mouse burn wound model. Antimicrob Agents Chemother 51(6), 1934-1938. DOI:10.1128/AAC.01028-06

McKinstry M, Edgar R. 2005. Phages: their role in bacterial pathogenesis and biotechnology. Matthew K. Waldor, David I. Friedman, and Sankar L. Adhya, ed.ASM Press, Washington DC, United States.

Nelson DC. 2014. Phage Classification for 21st Century. In: Life in Our Phage World: A Centennial Field Guide to the Earth’s Most Diverse Inhabitants, 1st ed. Wholon, San Diego, California, United States.

Nir-Paz R, Gelman D, Khouri A, et al. 2019. Successful treatment of antibiotic resistant poly-microbial bone infection with bacteriophages and antibiotics combination. Clin Infect Dis 69(11), 2015-2018. DOI: 10.1093/cid/ciz222

Norman JM, Handley SA, Baldridge MT, et al. 2015. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell 32(7), 736-740. DOI:10.1016/j.cell.2015.01.002

O’Flynn G, Ross RP, Fitzgerald GF, Coffey A. 2004. Evaluation of a cocktail of three bacteriophages for biocontrol of Escherichia coli O157:H7. Appl Environ Microbiol 70(6), 3417-3424. DOI:10.1128/AEM.70.6.3417-3424.2004

Pelfrene E, Willebrand E, Cavaleiro SA, Sebris Z. 2016. Cavaleri M. Bacteriophage therapy: a regulatory perspective. J Antimicrob Chemother 71(8), 2071-2074. DOI:10.1093/jac/dkw083

Scallan E, Hoekstra RM, Angulo FJ, et al. 2011. Foodborne illness acquired in the United States—major pathogens. Emerg Infect Dis 17(1), 7-15. DOI: 10.3201/eid1701.p11101External

Sillankorva SM, Oliveira H, Azeredo J. 2012. Bacteriophages and their role in food safety. Int J Microbiol 2012, 1-13. DOI:10.1155/2012/863945

Smith HW, Huggins MB, Shaw KM. 1987. Factors influencing the survival and multiplication of bacteriophages in calves and in their environment. Microbiology 133(5), 1127-1135. DOI:10.1099/00221287-133-5-1127

Summers WC. 2012. The strange history of phage therapy. Bacteriophage 2(2), 130-133. DOI: 10.4161/bact.20757

Suttle CA. 2005. Viruses in the sea. Nature 437, 356–361.DOI: 10.1038/nature04160

Tanaka C, Yamada K, Takeuchi H, Inokuchi Y, Kashiwagi A, Toba T. 2018. A lytic bacteriophage for controlling Pseudomonas lactis in raw cow’s milk. Appl Environ Microbiol 84(18), 1-11. DOI:10.1128/aem.00111-18

Thanner S, Drissner D, Walsh F. 2016. Antimicrobial resistance in agriculture. mBio 7(2), e02227-15. DOI:10.1128/mBio.02227-15.

Tock MR and Dryden DTF. 2005. The biology of restriction and anti-restriction. Curr Opin Microbiol 8, 466-472

Verraes C, Van Boxstael S, Van Meervenne E, et al. 2013. Antimicrobial resistance in the food chain: a review. Int J Environ Res Public Health 10(7), 2643-2669. DOI:10.3390/ijerph10072643

Whitman WB, Coleman DC, and Wiebe WJ.1998. Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95, 6578-6583. DOI: 10.1073/pnas.95.12.6578

World Health Organization (WHO). 2017. One Health. Available at https://www.who.int/features/qa/one-health/en/ (Accessed April 22, 2020).

World Health Organization (WHO). 2014. Antimicrobial Resistance Global Report on Surveillance. Available at http://apps.who.int/iris/bitstream/10665/112642/1/9789241564748_engPdf. (Accessed April 20, 2020).

World Health Organization (WHO). 2013. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. 2013, 1-7. DOI:10.1590/S0100- 15742013000100018

Zuo T, Wong SH, Lam K, et al. 2017. Bacteriophage transfer during faecal microbiota transplantation in Clostridium difficile infection is associated with treatment outcome. Gut 67, 634-643. DOI: 10.1136/gutjnl-2017-313952




DOI: https://doi.org/10.37604/jmsb.v2i1.36

Article Metrics

Abstract views : 195 | views : 57

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Copyright © 2019 by Indonesian Culture Collection (InaCC), Research Center for Biology
Indonesian Institute of Sciences (LIPI)

Cibinong Science Center (CSC), Jln. Raya Jakarta-Bogor KM. 46 Cibinong 16911, West Java, Indonesia
Telp. +62-21-8761356, Fax. +62-21-8761357
Available online: https://www.e-jmsb.id
E-mail: editor@e-jmsb.id
e-ISSN 2685-4430