Evaluation of anti-Fusarium and auxin production of Trichoderma virens InaCC F1030 isolated from rhizosphere of banana

Toga Pangihotan Napitupulu(1*), Indriati Ramadhani(2), Atit Kanti(3), I Made Sudiana(4)

(1) Research Center for Biology. Cibinong Science Center (CSC), Jln. Raya Jakarta-Bogor KM. 46 Cibinong 16911, West Java, Indonesia Telp. +62-21-8761356, Fax. +62-21-8761357
(2) Microbiology Division, Research Center for Biology, Indonesian Institute of Sciences-LIPI, Jalan Raya Jakarta-Bogor Km 46, Cibinong 16911, Indonesia
(3) Microbiology Division, Research Center for Biology, Indonesian Institute of Sciences-LIPI, Jalan Raya Jakarta-Bogor Km 46, Cibinong 16911, Indonesia
(4) Microbiology Division, Research Center for Biology, Indonesian Institute of Sciences-LIPI, Jalan Raya Jakarta-Bogor Km 46, Cibinong 16911, Indonesia
(*) Corresponding Author


Banana rhizosphere harbors a unique diversity of microbes including fungi that play critical roles in the growth of the plant host as well as might be important for biologically controlling the fungal soil-borne pathogens particularly Fusarium oxysporum f.sp. cubense (Foc), the causing agent of devastating Panama wilt. Among other fungi, we have succeeded to isolate a Trichoderma species from rhizosphere of healthy banana. Molecular identification revealed the isolate as Trichoderma virens InaCC F1030 (being collection of Indonesian Culture Collection or InaCC). Therefore, the aim of this study was to investigate the biological control of our isolate against Foc as well as plant growth promoting ability through its ability to produce auxin (indole-3-acetic acid/IAA). Two approaches were employed to evaluate the antagonism of our isolate against Foc, through direct confrontation test and volatile organic compounds (VOCs) producing. We found that our isolate was considered as antagonistic to the Foc, but not highly antagonistic according to direct confrontation assay. However, it was also revealed that our isolate produces the VOCs that inhibited around 50% of the mycelial growth of the test pathogen after six to seven days of exposure. Our isolate was able to produce the IAA in axenic submerged fermentation condition particularly in the presence of the precursor L-tryptophan. IAA production ability as well as the mycelial biomass of fungus were increased approximately 17% and 120% respectively as the effect of supplementation of 0.1% of L-tryptophan. These in vitro bioassays lead us to conclude that somehow our isolate T. virens InaCC F1030 has potency to be utilized as biocontrol and biofertilizer agent.


banana, Foc, IAA, Trichoderma virens

Full Text:



Bell DK. 1982. In vitro antagonism of Trichoderma species against six fungal plant pathogens. Phytopathology 72(4), 379. DOI:10.1094/phyto-72-379

Benítez T, Rincón AM, Limón MC, Codón AC. 2004. Biocontrol mechanisms of Trichoderma strains. International microbiology: the official journal of the Spanish Society for Microbiology 7(4), 249–260.

Bissett J, Gams W, Jaklitsch W, Samuels GJ. 2015. Accepted Trichoderma names in the year 2015. IMA Fungus 6(2), 263–295. DOI:10.5598/imafungus.2015.06.02.02

Błaszczyk, L., Siwulski, M., Sobieralski, K., Lisiecka, J., & Jędryczka, M. (2014). Trichoderma spp. – application and prospects for use in organic farming and industry. Journal of Plant Protection Research, 54(4), 309–317. DOI:10.2478/jppr-2014-0047

Campos VP, Pinho RSC de, Freire ES. 2010. Volatiles produced by interacting microorganisms potentially useful for the control of plant pathogens. Ciência e Agrotecnologia 34(3), 525–535. DOI:10.1590/s1413-70542010000300001

Contreras-Cornejo HA, Macías-Rodríguez L, Cortés-Penagos C, López-Bucio J. 2009. Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiology 149(3), 1579–1592. DOI:10.1104/pp.108.130369

De Fretes CE, Sembiring L, Purwestri YA. 2015. Characterization of Streptomyces spp. producing indole-3-acetic acid as biostimulant agent. Indonesian Journal of Biotechnology 18(2), 83. DOI:10.22146/ijbiotech.7872

Dubey SC, Suresh M. and Singh B. 2007. Evaluation of Trichoderma species against Fusarium oxysporum f. sp. ciceris for integrated management of chickpea wilt, Biological Control. DOI: 10.1016/j.biocontrol.2006.06.006.

Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32(5), 1792-1797. DOI: 10.1093/nar/gkh340

FAO F, AO of the UN. 2018. Banana Market Review 2018. Preliminary Results for 2018.

Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4), 783. DOI:10.2307/2408678

Frison EA, Escalant JV, Sharrock S. 2004. The global Musa genomic consortium: a boost for banana improvement. In Banana improvement: cellular, molecular biology, and induced mutations. Proceedings of a meeting held in Leuven, Belgium, 24-28 September 2001.

Gordon SA, Weber RP. 1951. Colorimetric Estimation of Indole acetic Acetic Acid. Plant Physiology, 26(1), 192–195. DOI:10.1104/pp.26.1.192

Gunasekaran M, Weber DJ. 1972. Tryptophan stimulation of growth and sporulation of Rhizopus arrhizus Fischer. Canadian Journal of Microbiology 18(8), 1185–1190. DOI:10.1139/m72-185

Guo Y, Ghirardo A, Weber B, Schnitzler JP, Benz JP, Rosenkranz, M. 2019. Trichoderma species differ in their volatile profiles and in antagonism toward ectomycorrhiza Laccaria bicolor. Frontiers in Microbiology 10. DOI:10.3389/fmicb.2019.00891

Hung R, Lee S, Bennett JW. 2013. Arabidopsis thaliana as a model system for testing the effect of Trichoderma volatile organic compounds. Fungal Ecology 6(1), 19–26. DOI:10.1016/j.funeco.2012.09.005

Jukes TH, Cantor CR. 1969. Evolution of protein molecules. mammalian protein metabolism 21–132. DOI:10.1016/b978-1-4832-3211-9.50009-7

Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33(7), 1870–1874. DOI:10.1093/molbev/msw054

Leylaie S, Zafari D. 2018. Antiproliferative and antimicrobial activities of secondary metabolites and phylogenetic study of endophytic Trichoderma species from Vinca plants. Frontiers in Microbiology 9. DOI:10.3389/fmicb.2018.01484

López-Mondéjar R, Ros M, Pascual JA. 2011. Mycoparasitism-related genes expression of Trichoderma harzianum isolates to evaluate their efficacy as biological control agent. Biological Control 56(1), 59–66. DOI:10.1016/j.biocontrol.2010.10.003

Meena M., Swapnil P, Zehra A, Dubey MK,Upadhyay RS. 2017. Antagonistic assessment of Trichoderma spp. by producing volatile and non-volatile compounds against different fungal pathogens. Archives of Phytopathology and Plant Protection 50(13-14), 629–648. DOI:10.1080/03235408.2017.1357360

Moya PA., Girotti JR, Toledo AV, Sisterna MN. 2018. Antifungal activity of Trichoderma VOCs against Pyrenophora teres, the causal agent of barley net blotch. Journal of Plant Protection Research 58(1), 45-53. DOI: 10.24425/119115

Napitupulu TP, Ilyas M, Kanti A, Sudiana IM. 2019a. In vitro evaluation of Trichoderma harzianum strains for the control of Fusarium oxysporum f.sp. cubense. Plant Pathology & Quarantine 9(1), 152–159. DOI:10.5943/ppq/9/1/13

Napitupulu TP, Ilyas M, Kanti A, Sudiana IM. 2019b. Screening and evaluation of various carbon sources on the ability of Trichoderma harzianum InaCC to solubilize insoluble phosphate. Jurnal Biologi Indonesia 15(2), 205-211. DOI: 10.14203/jbi.v15i2.3814

Napitupulu TP, Kanti A, Sudiana IM. 2019c. Evaluation of the environmental factors modulating indole-3-acetic acid (IAA) production by Trichoderma harzianum InaCC F88. IOP Conference Series: Earth and Environmental Science 308, 012060. DOI:10.1088/1755-1315/308/1/012060

Qualhato TF, Lopes FAC, Steindorff AS, Brandão RS, Jesuino RSA, Ulhoa CJ. 2013. Mycoparasitism studies of Trichoderma species against three phytopathogenic fungi: evaluation of antagonism and hydrolytic enzyme production. Biotechnology Letters 35(9), 1461–1468. DOI:10.1007/s10529-013-1225-3

Saber WIA, Ghoneem KM, Rashad YM, Al-Askar AA. 2017. Trichoderma Harzianum WKY1: an indole acetic acid producer for growth improvement and anthracnose disease control in sorghum. Biocontrol Science and Technology 27(5), 654–676. DOI:10.1080/09583157.2017.1321733

Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular biology and evolution 4(4), 406–425. DOI: 10.1093/oxfordjournals.molbev.a040454

Sanger F, Nicklen S, Coulson AR. 1977. DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences 74(12), 5463–5467. DOI:10.1073/pnas.74.12.5463

Taghdi Y, Hermosa R, Dominguez S, Rubio MB, Essalmani H, Nicolas C, Monte E. 2015. Effectiveness of composts and Trichoderma strains for control of Fusarium wilt of tomato. Phytopathologia Mediterranea, 232-240.

White TJ, Bruns T, Lee S,Taylor J. 1990. Amplification and directsequencing of fungal. In: Innis MA, Gelfand DH, Sninsky JJ,White TJ (eds) PCR protocols: a guide to methods and applications.Academic Press, San Diego, pp 315–322.

DOI: https://doi.org/10.37604/jmsb.v2i1.39

Article Metrics

Abstract views : 98 | views : 39


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright © 2019 by Indonesian Culture Collection (InaCC), Research Center for Biology
Indonesian Institute of Sciences (LIPI)

Cibinong Science Center (CSC), Jln. Raya Jakarta-Bogor KM. 46 Cibinong 16911, West Java, Indonesia
Telp. +62-21-8761356, Fax. +62-21-8761357
Available online: https://www.e-jmsb.id
E-mail: editor@e-jmsb.id
e-ISSN 2685-4430